
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 47:1315–1321
Published online 27 January 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.927

Elimination AD applied to Jacobian assembly for an implicit
compressible CFD solver

Mohamed Tadjouddine1;∗;†, Shaun A. Forth1 and Ning Qin2

1Engineering Systems Department; Cran�eld University (Shrivenham Campus); ESD AMOR Group;
Swindon SN68LA; U.K.

2Department of Mechanical Engineering; The University of She�eld; Mappin Street; S1 3JD; U.K.

SUMMARY

In CFD, Newton solvers have the attractive property of quadratic convergence but they require deriva-
tive information. An e�cient way of computing derivatives is by algorithmic di�erentiation (AD) also
known as automatic di�erentiation or computational di�erentiation. AD allows us to evaluate deriva-
tives, usually at a cheap cost, without the truncation errors associated with �nite-di�erencing. Recently,
e�cient and reliable AD tools for evaluating derivatives have been published. In this paper, we use
some of the best AD tools currently available to build up the system Jacobian involved in the solution
of a �nite-volume parabolized Navier–Stokes (PNS) solver. Our aim is to direct scientists and engineers
confronted with the calculation of derivatives to the use of AD and to highlight those AD tools that
they should try. Moreover, we introduce an AD tool that produces Jacobian code that runs usually
twice as fast as that from conventional AD tools. We further show that the use of AD increases the
performance of a Newton-like solver for the PNS equations. Copyright ? 2005 John Wiley & Sons,
Ltd.

KEY WORDS: PNS; Newton solver; vertex elimination algorithm; algorithmic di�erentiation

1. INTRODUCTION

The di�culty lies, not in the new ideas, but in escaping the old ones, which ramify,
for those brought up as most of us have been, into every corner of our minds.
Keynes, John Maynard, 1883–1946.

This quotation can be applied to most new technologies. Techniques are invented, investi-
gated, experimented, yet the majority of practitioners are too cautious to adopt them for some

∗Correspondence to: Mohamed Tadjouddine, Engineering Systems Department, Cran�eld University (Shrivenham
Campus), ESD AMOR Group, Swindon SN68LA, U.K.

†E-mail: M.Tadjouddine@cran�eld.ac.uk

Contract=grant sponsor: EPSRC; contract=grant number: GR=R85358=01

Received 27 April 2004
Revised 17 September 2004

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 7 December 2004



1316 M. TADJOUDDINE, S. A. FORTH AND N. QIN

reasons. Such is the case for using algorithmic di�erentiation (AD) [1] in computing deriva-
tives of functions represented by computer programs.
Computing derivatives is ubiquitous in scienti�c computation and is essential to enable

Newton solvers. In CFD, the calculation of steady compressible �ow solutions reduces to the
solution of a nonlinear system of equations of the form

R(q)=0 (1)

in which R represents the residual vectors in a �nite-volume or �nite-element calculation, and
q represents the set of �ow variables at each point of the mesh.
To solve this system, one can use the following two approaches:

• Explicit time marching based on Runge–Kutta solvers, with acceleration methods such
as enthalpy damping, implicit residual smoothing and multigrid.

• Newton-like iteration methods necessarily involving a linear solver with coe�cient matrix
given by the system Jacobian or an approximation to it.

We focus on the second, which can be written as

qn+1 = qn − P(qn)R(qn) (2)

In (2), P(qn) may be an approximation to the inverse Jacobian (@R=@q)−1 and the resulting
quasi-Newton algorithm has at best asymptotically linear convergence [2]. Alternatively, in
the Newton–Raphson algorithm (exact Newton iteration), P is de�ned as the inverse of the
Jacobian P = (@R=@q)−1 and (2) exhibits quadratic convergence. However, the Newton–
Raphson iteration is limited by the amount of memory needed for industrial applications
involving high resolution of multidimensional PDE simulations. Newton–Krylov (inexact
Newton) solvers are of great interest as they are matrix-free solvers [3, 4]. They can save
a great amount of work while having asymptotically quadratic convergence since they use
Jacobian-vector or vector-Jacobian products instead of constructing the full Jacobian.
However, successful Newton–Krylov methods depend on how well the resulting Newton–
Krylov iteration is preconditioned. This preconditioning can be done using a linear
combination of local Jacobian approximations [3]. In Reference [5], this is done using
�nite di�erences; however, one can use AD for accurate evaluation of these submatrices
(local Jacobians).
Newton solvers require derivative information that can be obtained using hand-coding [6],

computer algebra systems [7] such as MATHEMATICA or MAPLE, �nite-di�erencing [5], or AD.
AD is not symbolic manipulation as performed in computer algebra systems. It systematically
augments the �oating-point part of a computer program with extra instructions to calculate
derivative values using the chain rule. In fact, it facilitates di�erentiation of functions repre-
sented by arbitrarily complex computer programs usually at a cheap cost without the truncation
errors associated with �nite-di�erencing.
The last decade witnessed an intense activity in AD tool development. Excellent AD tools

that are e�cient and reliable have been published. ADIFOR, TAF, TAMC, ADIC, and TAPENADE
are well-established tools, which make use of the standard forward or reverse modes [1] of
AD; see www.autodi�.org for more information. In this paper, we have used the ELIAD AD
tool [8, 9], which uses the vertex elimination algorithm of Griewank and Reese [10] in a
source transformation framework. Careful experiments showed that ELIAD produced Jacobian

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1315–1321



AD IN AN IMPLICIT COMPRESSIBLE CFD SOLVER 1317

codes running 2–10 times faster than those by ADIFOR or TAMC [9]. In this paper, we detail
the linearization of the Osher �ux, which is complex as it contains nested branches and
subroutine calls for which ELIAD uses a hierarchical approach to e�ciently preaccumulate
the Jacobian [11]. We show that the ELIAD-generated Jacobians are as fast as hand-coded
Jacobians and are an order of magnitude faster than those generated by TAMC, ADIFOR or
TAPENADE. Moreover, the associated Newton solver has near-identical convergence (in terms
of number of iterations and CPU time) to that using laboriously hand-coded Jacobians.

2. THE IMPNS SOLVER

Implicit multigrid parabolized Navier–Stokes (IMPNS) [12] is a space-marching solver for the
prediction of steady, supersonic and hypersonic �ows around many objects of interest [13].
This solver can be used to compute inviscid, laminar or turbulent Navier–Stokes �ow�elds.
In the cross �ow plane, inviscid and viscous �uxes are obtained with the Osher scheme [14]

and central scheme, respectively. Streamwise �uxes use the Vigneron approximation in con-
servative form (CF) or Morrison–Korte form (MKF) [15]. IMPNS uses a combination of
implicit (space-marching �nite-volume scheme on a multiple-block structured grid and pseudo
time-marching at each streamwise station) and multigrid methodologies for convergence ac-
celeration. In the implicit schemes, the resulting linear system can be approximated with ap-
proximate factorization (AF) and solved exactly or solved approximately using the GMRES
algorithm with an AF or an incomplete block LU factorization preconditioning.

3. THE ELIAD TOOL

ELIAD is an AD tool for a restricted class of Fortran programs motivated by application to
numerical �ux evaluation in CFD. Such subroutines typically have 10–100 inputs and outputs,
some hundreds of intermediate values, branches and (assumed unrollable) loops. ELIAD uses
the source transformation approach but unlike ADIFOR or TAMC, ELIAD employs the vertex
elimination algorithm [10]. This algorithm views the Jacobian as a bipartite graph between
output and input vertices, whereby a nonzero entry of the Jacobian is represented by an edge
from an input vertex to an output vertex. The Jacobian can be calculated by eliminating, in
some order, all intermediate vertices of the computational graph obtained from the input code.
In matrix terms, this can be regarded as a Schur complement calculation or the solution of a
linear system using some form of Gaussian elimination [1, 9].
ELIAD takes as input a source code, builds up its computational graph composed of input,

intermediate and output vertices, and uses heuristics from sparse matrix technology such as
the Markowitz strategy to �nd elimination sequences that reduce the number of operations
required to accumulate the Jacobian. The elimination sequence is then used to generate the
corresponding derivative code. The good news is that the ELIAD approach exploits sparsity
of the Jacobian calculation and always requires less �ops than the conventional AD forward
and reverse modes as detailed in References [9, 10].

4. FLUX JACOBIAN CALCULATIONS

The IMPNS code contains �ux routines coded as vector functions F with n independent
variables and m dependents: Osher (n=10; m=5), viscous (n=10; m=5), and Vigneron

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1315–1321



1318 M. TADJOUDDINE, S. A. FORTH AND N. QIN

Figure 1. A code fragment (left) and its di�erentiated form (right).

(n=5; m=5). These �ux routines need to be linearized for the Newton solver as their
Jacobians are calculated for each cell face of the �nite-volume mesh at each Newton
iteration. Typically, these codes contain nested branches and subroutine calls. A di�culty
of the ELIAD approach lies in dealing with branches. This is done hierarchically and is
described in Reference [11]. A nested branch similar to that found in our Osher code is
given in Figure 1 on the left and its ELIAD-generated Jacobian code is on the right. The
variables q1, q2, f1, and f are typically 4 arrays of length 5. The variables q1 and q2 are
vectors of �ow variables, f the �ux and f1 the �ux contribution to be added or subtracted
to f. The variables cond1 and cond2 are boolean expressions whose value depends on local
characteristic wave speed. The ELIAD-generated code on the right of Figure 1 is simpli�ed
for clarity using Fortran 95 array operations. While ELIAD takes advantage of the structure
of the code, building up the 5×10 �ux Jacobian from the 5×5 local Jacobians of subroutines
sub1, sub2 and sub3, ADIFOR, TAMC, or TAPENADE’s forward vector modes cannot do so and
will propagate derivative vectors of length 10 throughout.
We generated Jacobian codes using various AD tools (ADIFOR, TAMC, TAPENADE, and ELIAD),

ran the Jacobian codes using careful randomized data and compared the results with those of
hand-coded Jacobians. Random pressures and densities in the range (0.5,1) were generated
so that the resulting sound speeds would be realistic. Directional Mach numbers in the range
(−4; 4) were used to compute velocities so as to take account of all branches in the Osher
scheme. We performed 50 000 evaluations for each Jacobian calculation and average the CPU
time on: a SUN Blade with 600 MHz CPU using the SUN Workshop compiler (Blade1000);
a COMPAQ Alpha DS20E workstation with 667 MHz CPU using the COMPAQ f95 compiler
(Alpha); and a Pentium III with 700 MHz CPU using COMPAQ Visual Fortran (PIII). Table I
summarizes the ratio between the timings of the Jacobian and the original function. It shows
that the ELIAD Jacobian code is relatively faster (up to 2 times) than conventional AD or
�nite di�erencing across platforms and occasionally outperforms hand-coded Jacobians.

5. RESULTS

To see the e�ect of our various Jacobian evaluation techniques within the IMPNS solver,
we calculate the steady �ow about a sharp ogive-nosed cylindrical body [13] with in�ow

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1315–1321



AD IN AN IMPLICIT COMPRESSIBLE CFD SOLVER 1319

Table I. E�ciency of �ux Jacobian calculations: ratio CPU(J(F))/CPU(F).

Osher �ux Viscous �ux

Technique Blade1000 Alpha PIII Blade1000 Alpha PIII

Finite di�erence 12.8 11.8 9.4 10.2 10.1 7.6
ADIFOR (forward) 11.8 26.6 4.9 5.9 6.3 5.6
TAMC (forward) 18.1 29.7 4.0 5.7 5.2 4.6
TAMC (reverse) 19.8 26.5 4.2 7.6 4.4 4.7
TAPENADE (forward) 18.5 19.3 4.3 7.5 5.8 5.2
ELIAD 10.6 7.1 3.2 4.8 4.1 3.3
HAND-CODED 4.3 8.6 2.1 4.4 4.4 3.5

Vigneron �ux:CF Vigneron �ux:MKF

Technique Blade1000 Alpha PIII Blade1000 Alpha PIII

Finite di�erence 5.5 5.1 4.7 4.7 3.8 3.7
ADIFOR (forward) 6.4 4.2 4.8 4.5 2.6 3.2
TAMC (forward) 6.1 3.1 3.5 4.2 2.9 2.7
TAMC (reverse) 8.7 5.0 5.2 5.7 2.9 3.3
TAPENADE (forward) 5.4 3.0 4.3 3.8 2.6 3.0
ELIAD 3.8 2.3 3.8 3.2 2.1 2.3
HAND-CODED 2.6 2.0 2.6 1.9 1.4 1.8

conditions given by a Mach number of 2, Reynolds number 1:2×106 (based on body diameter)
and using the Baldwin–Lomax turbulence model with Degani–Schi� corrections. A grid with
84 cells normal to the body, 72 circumferentially and 60 along the body was used. In Figure 2,
we see computed cross-�ow pitot pressure contours at a distance nine diameters downstream
of the nose; note the boundary-layer separation and large vortex.
Table II gives overall solution statistics, total number of nonlinear iterations and CPU time,

when we solve the 60 nonlinear systems associated with each cross-�ow mesh using a 2-level
multigrid acceleration of our Newton-like iteration with CFL number of 25 and linear solvers
via GMRES with block incomplete LU decomposition with zero �ll. Di�erent rows of the
table correspond to di�erent techniques for generating �ux Jacobian code. Runs are performed
on di�erent platforms Blade1000, Alpha, and PIII as in Section 4. Table II shows the number
of iterations unchanged across platforms but, as might be expected, hand-coding gives the
best overall performance, and though the ELIAD-generated results are only up to 2% slower
while TAMC-generated Jacobians are up to 6% slower.

6. CONCLUSIONS

In this paper, we have shown that the system Jacobian used by the linear solver involved in
a Newton solver can be obtained using AD to obtain �ux Jacobians and assemble the system
residual Jacobian at each Newton iteration. The resulting Jacobian code is nearly as e�cient as
hand-coding but for a fraction of the human e�ort, and gives comparable overall performance
for the solution of the 3-D parabolized Navier–Stokes equations using the IMPNS code.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1315–1321



1320 M. TADJOUDDINE, S. A. FORTH AND N. QIN

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

1

0.96948

0.53186

0.79443

0.92571

0.92571

Figure 2. Cross-�ow Pitot-pressures at nine diameters.

Table II. Solution statistics using BILU(0) preconditioning.

Blade1000 Alpha PIII

Linearization No. of iter. CPU No. of iter. CPU No. of iter. CPU

TAMC (forward) 1634 768.6 1634 591.5 1634 1232.2
ELIAD 1634 730.6 1634 562.1 1634 1194.6
HAND-CODED 1636 721.5 1636 558.4 1636 1166.2

Algorithmic di�erentiation is a tool that is likely to be integrated in the next generation of
computer software packages because of the ubiquitous requirement of derivatives in scienti�c
computation. By presenting the use of AD in Newton solvers, we hope to provide some
insights on what AD is capable of, raise awareness of AD by pointing out currently available
tools, and reach out to engineers and practitioners in the wider area of computational science.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1315–1321



AD IN AN IMPLICIT COMPRESSIBLE CFD SOLVER 1321

REFERENCES

1. Griewank A. Evaluating Derivatives: Principles and Techniques of Algorithmic Di�erentiation, Frontiers in
Applied Mathematics. SIAM: Philadelphia, 2000.

2. Giles MB. On the iterative solution of adjoint equations. In Automatic Di�erentiation: From Simulation to
Optimization, Corliss G et al. (eds), Computer and Information Science. Springer: Berlin, 2001; 141–147.

3. Knoll DA, Keyes DE. Jacobian-free Newton–Krylov methods: a survey of approaches and applications. Journal
of Computational Physics 2004; 193:357–397.

4. Qin N, Ludlow DK, Shaw ST. A matrix-free preconditioned Newton/GMRES method for unsteady Navier–
Stokes solutions. International Journal for Numerical Methods in Fluids 2000; 33(3):223–248.

5. Hovland PD, McInnes LC. Parallel simulation of compressible �ow using automatic di�erentiation and PETSc.
Parallel Computing 2001; 27(4):503–519.

6. Venkatakrishnan V. Newton solution of inviscid and viscous problems. AIAA Journal 1989; 27(7):885–891.
7. Vanden KJ, Orkwis PD. Comparison of numerical and analytical Jacobians. AIAA Journal 1996; 34(6):
1125–1129.

8. Forth SA, Tadjouddine M. CFD Newton solvers with ELIAD, an elimination automatic di�erentiation tool.
Proceedings of the Second International Conference on CFD. Springer: Sydney, 2003; 134–139.

9. Forth SA, Tadjouddine M, Pryce JD, Reid JK. Jacobian code generated by source transformation and vertex
elimination can be as e�cient as hand-coding. ACM TOMS 2004; 30(3):266–299.

10. Griewank A, Reese S. On the calculation of Jacobian matrices by the Markowitz rule. Automatic Di�erentiation
of Algorithms: Theory, Implementation, and Application. SIAM: Philadelphia, 1991; 126–135.

11. Tadjouddine M, Forth SA, Pryce JD. Hierarchical automatic di�erentiation by vertex elimination and source
transformation. In Computational Science and its Applications—ICCSA 2003, Kumar V et al. (eds), Lecture
Notes in Computer Science, vol. 2668. Springer: Berlin, 2003; 115–124.

12. Ludlow DK. IMPNS User Manual. CoA Report NFP-0113, Cran�eld University, Beds, UK, 2000.
13. Birch TJ, Qin N, Jin X. Computation of supersonic viscous �ows around a slender body at incidence. In the

12th Applied Aerodynamics Conference, 2–22 June 1994, Colorado Springs, CO, AIAA 94-1938.
14. Osher S, Soloman F. Upwind di�erence schemes for hyperbolic systems of conservation laws. Mathematics of

Computation 1982; 38:339–374.
15. Morrison JH, Korte JJ. Implementation of Vigneron’s streamwise pressure gradient approximation in the PNS

equations. AIAA Journal 1992; 30(11):2774–2776.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1315–1321


